
The De�nition of Standard ML with

Packages

Andreas Rossberg

Universit�at des Saarlandes

rossberg@ps.uni-sb.de

April 12, 2005

1 Introduction

This document formally speci�es the semantics of local modules and packages { dy-
namically typed modules that are �rst-class values { as an extension to the functional
programming language Standard ML [4]. The language thus de�ned is a substantial sub-
set of a larger extension of Standard ML, a language known as Alice ML [9, 2]. Packages
are the central feature of Alice ML that enables support for typed open programming.

Packages are a variant of the concept of dynamics [5, 1, 3]. Dynamics complement
static typing with isolated dynamic type checking by providing a universal type of `dy-
namic values' that carry run-time type information. Values of every type can be injected
into the `dynamic' type, projection is a type-matching operation that dispatches on the
run-time type found in the dynamic value.

Instead of simple values, packages contain modules. Projection simply matches the
runtime package signature against a static one { with full respect for subtyping. See [9]
for a more detailed discussion of packages and their motivation and application in the
context of Alice ML, including semantic implications and their relation to �rst-class
modules [10].

The language speci�cation we provide in this document is not self-enclosed. Instead,
we describe the respective modi�cations and extensions to the De�nition of Standard
ML [4] that are necessary to incorporate the aforementioned constructs. Hence, the
presentation is rather technical and requires a thorough understanding of the De�nition
itself.

We make three main modi�cations to the De�nition:

1

� the distinction between core and structure level declarations has to be removed,

� type declarations need to be re
ected in the dynamic semantics,

� pack and unpack expressions and package values have to be added.

Notice that the �rst point implies that part of SML's strati�cation between the core
and the module language is abolished { core expressions can now contain structure
declarations. However, the strati�cation is still maintained on the type level (which is
also true for full Alice ML, since it does not provide modules as �rst-class values).

The second point implements the semantics of dynamic types necessary to support the
dynamic type check performed when a package is unpacked. It implements a dynamically
generative semantics for type abstraction and datatypes in order to maintain abstraction
safety [8]. Note that we need no dynamic semantics for polymorphic type variables.

Packages themselves are straightforward given the previous two modi�cations.

The semantics speci�ed in this document has been a�rmed by implementing it one-
to-one in the framework of HaMLet [7], a model implementation of the De�nition of
Standard ML. A practical implementation is available in form of the Alice System [2].

2 Changes to the Syntax of the Core (Chapter 2)

2.1 Reserved Words (Section 2.1)

The word pack is added to the list of reserved words used in the Core.

2.2 Grammar (Section 2.8)

Packing is added as a new expressions form:

exp ::= : : : (as before)
pack longstrid : sigid packing

Furthermore, structure declarations are allowed as core declarations:

dec ::= : : : (as before)
strdec structure declaration

3 Changes to the Syntax of Modules (Chapter 3)

3.1 Reserved Words (Section 3.1)

The word unpack is added as another additional reserved word used in Modules.

2

3.2 In�xed Operators (Section 3.3)

The second phrase concerning local is removed from the enumeration, since it is no
longer part of the module language (see next section).

3.3 Grammar for Modules (Section 3.4)

Structure declarations can appear as part of plain declarations. The phrase class StrDec
for structure-level declarations can hence be simpli�ed to represent structure declarations
only, and its grammar no longer needs to duplicate parts of dec:

strdec ::= structure strbind

Unpacking is added as a new structure expression, and former occurences of strdec are
replaced by plain dec:

strexp ::= struct dec end basic
: : : (as before)
let dec in strexp end local declaration
unpack longvid : sigexp unpacking

Likewise, the occurence of strdec in toplevel declarations has to be replaced:

topdec ::= dec htopdeci declaration
: : : (as before)

4 Changes to the Static Semantics for the Core (Section 4)

4.1 Compound Objects (Section 4.2)

To support local structure expressions, contexts have to include functor and signature
environments:

C or T;U; F;G;E 2 Context = TyNameSet�TyVarSet�FunEnv�SigEnv�Env

Functor environments (FunEnv) and signature environments (SigEnv) are de�ned in
Section 5.1 of the De�nition.

4.2 Projection, Injection and Modi�cation (Section 4.2)

The example of context modi�cation is adapted to the extended de�nition of contexts,
i.e. C + (T;VE) means

((T of C) [T; U of C; F of C; G of C; (E of C) +VE)

3

4.3 Inference Rules (Section 4.10)

Expressions C ` exp) �

A new rule for packing expressions is added. To describe matching, it uses the same
side conditions as rule 52 (Section 5.7 of the De�nition), which deals with signature
constraints:

C(longstrid) = E C(sigid) = � � � E0 � E

C ` pack longstrid : sigid) package
(12a)

Comment: Signature matching � � E0 � E is de�ned in Section 5.6 of the De�nition.
Note that unlike rule 53, no side condition on the type names in the signature is necessary,
since they cannot appear in the result type.

Declarations C ` dec) E

A new rule is added for structure declarations:

B of C ` strdec) E

C ` strdec) E
(24a)

Comment: The projection B of C is de�ned in the static semantics for Modules below.

5 Changes to the Static Semantics for Modules (Section 5)

5.1 Semantic Objects (Section 5.1)

The projection C ofB is adapted to the extended de�nition of contexts (Section 4.1).1 It
denotes the context (T of B; ;; F of B;G of B;E of B). Moreover, the inverse projection
B of C is de�ned as (T of C;F of C;G of C;E of C).

5.2 Inference Rules (Section 5.7)

The last paragraph of the Theorem is adapted to the extended de�nition of contexts by
replacing the inferred sentence with T;U; F;G;E ` phrase) A.

1With the extension of contexts, a basis is turned into context rather by injection, so the notation

B in Context would be more appropriate. However, we chose to keep the notation used in the

De�nition to avoid changing too many rules.

4

Structure Expressions B ` strexp) E

Structures and let pre�xes contain core declarations, hence the respective rules are
adapted:

C of B ` dec) E

B ` struct dec end) E
(50)

C of B ` dec) E1 B � E1 ` strexp) E2

B ` let dec in strexp end) E2
(55)

Unpacking requires a new rule:

B(longvid) = (package; v) B ` sigexp) (T)E

B ` unpack longvid : sigexp) E
(55a)

Comment: The side condition in rule 65 ensures that the type names in T are fresh, and
hence the signature is treated as opaque.

Structure Declarations B ` strdec) E

Rules 56 and 58{60 are deleted, because the StrDec grammar has been simpli�ed (see
Section 3.3).

Top-level Declarations B ` topdec) B0

The former rule for structure declarations is adapted to the respective syntax change
(see Section 3.3):

C of B ` dec) E hB � E ` topdec) B0i
B00 = (tynamesE;E) in Basish+B0i tyvarsB00 = ;

B ` dec htopdeci) B00
(87)

6 Changes to the Dynamic Semantics for the Core (Chapter 6)

6.1 Reduced Syntax (Section 6.1)

Since types have to be represented in the dynamic semantics in order to de�ne dynamic
typing, no transformations are made to delete any type declarations from the syntax.
The only transformation is the removal of explicit type ascriptions \: ty".

5

6.2 Compound Objects (Section 6.3)

The most notable extension to the core semantics is the addition of package values, which
are pairs of an environment representing the packaged structure and its interface:

v 2 Val = � � � [PackageVal

(E; I) 2 PackageVal = Env� Int

Interfaces represent signatures in the dynamic semantics. They are de�ned by the De�-
nition in the Dynamic Semantics for Modules (Chapter 7), but need to be modi�ed (see
Section 7.2).

To model dynamic typing, dynamic type environments not only carry constructor
environments as in the De�nition, but also the corresponding type functions. That is,
we introduce type structures, like they exist in the static semantics, into the dynamic
semantics:

TE 2 TyEnv = TyCon
�n
�! TyStr

(�;VI) 2 TyStr = TypeFcn�ValInt

To be able to check equivalence of datatypes, a type structure's constructor environment
is not a value environment, but instead a value interface. The De�nition de�nes value
interfaces in the Dynamic Semantics for Modules (Chapter 7), but for Alice ML they
are extended to contain full type information (see Section 7.2).

Type generativity is re
ected in the dynamic semantics. The state is thus extended
to record the set of type names already generated:

(mem; ens; tns) or s 2 State = Mem�ExNameSet�TyNameSet

In order to support local structures, functor and signature environments have to be
available within core expressions. Like in the static semantics for the core, a context is
hence used:

C or (F;G;E) 2 Context = FunEnv�SigEnv�Env

Note that this de�nition of a dynamic context is equivalent to that of a dynamic basis
(Section 7.2 of the De�nition). They are hence interchangable. We de�ne C in Basis to
mean the reinterpretation of C as a basis. Vice versa, C ofB denotes the reinterpretation
of B as a context.

Accordingly, we have to change the de�nition of function closures to contain contexts:

(match; C;VE) 2 FcnClosure = Match�Context�ValEnv

6

6.3 Basic Exceptions (Section 6.5)

The set BasExName of basic exceptions is extended to include the exception name
denoted by the identi�er Unpack. The exception Unpack is raised upon failure to unpack
a package, i.e. when a dynamic type mismatch occurs.

6.4 Inference Rules (Section 6.7)

In all rules of the dynamic semantics, occurences of environment variables E on the
left-hand side of the turnstile have to be replaced by context variables C. Since the
modi�cations are mechanic, we will not replicate all rules here.

Expressions C ` exp) v=p

C(longstrid) = E C(sigid) = � � � I � InterE

C ` pack longstrid : sigid) (E # I; I); s
(108a)

Comment: The package signature is transparent, i.e. all type names are realised. The
interface I binds type constructors to the same type structures as the environment E,
so that packages are consistent with respect to their choice of type names. Signature
matching � � E1 � E2 is de�ned in Section 5.6 of the De�nition and applies equally to
the modi�ed de�nition of interfaces. The operator Inter is de�ned in Section 7.2 of the
De�nition, but adapted to the new de�nition of interfaces (Section 7.2).

Declarations C ` dec) E0=p

Dynamic typing implies that types have to be passed during evaluation. In Alice ML,
only explicitly declared types have to be represented in the dynamic semantics. This
is modelled by modifying the rules dealing with type declarations. The modi�ed rules
essentially mimic the corresponding rules in the static semantics. Note that this requires
the rules for type, datatype, constructor, and exception bindings to be formulated relative
to a dynamic context C.

C ` typbind) TE

C ` type typbind) TE in Env
(115)

7

C + TE ` datbind) VE ;TE TE maximises equality

C ` datatype datbind) (VE ;TE) in Env
(116)

C(longtycon) = (�;VI) TE = ftycon 7! (�;VI)g
VE = fvid 7! (vid ; is) ; VI (vid) = (�; is)g

C ` datatype tycon = datatype longtycon) (VE ;TE) in Env
(117)

C + TE ` datbind) VE ;TE TE maximises equality
C + (VE ;TE) ` dec) E0

C ` abstype datbind with dec end) E0
(118)

Comment: (116),(118) The freshness of type names generated by datbind is ensured by
choosing them with respect to the state in rule 128.

A new rule is added for structure declarations:

C in Basis ` strdec) E

C ` strdec) E
(123a)

Type Bindings C ` typbind) TE

tyvarseq = �(k) C ` ty) � hC ` typbind) TE i

C ` tyvarseq tycon = ty hand typbindi)

ftycon 7! (��(k):�; fg)gh+TE i

(127)

Datatype Bindings C ` datbind) VE ;TE

tyvarseq = �(k) s; C; �(k)t ` conbind) VI ; s arity t = k
t =2 tns of s s0 = s+ ftg hs0; C ` datbind) (VE 0;TE 0); s00i

VE = fvid 7! (vid ; is) ; VI (vid) = (�; is)g

s; C ` tyvarseq tycon = conbind hand datbindi)

VE h+VE 0i; ftycon 7! (t;ClosVI)gh+TE 0i; s0h0i

(128)

Comment: A datatype binding generates new type names.

Constructor Bindings C; � ` conbind) VI

hC ` ty) � 0i hhC; � ` conbind) VI ii

C; � ` vid hof tyi hh| conbindii)

fvid 7! (�; c)gh+fvid 7! (� 0 ! �; c)gihh+VI ii

(129)

8

Type Expressions C ` ty) �

Type Rows C ` tyrow) %

Dynamic types are represented by the same objects as static types. Consequently, the
evaluation rules (149a)-(149f) for types are identical to the rules (44)-(49) of the static
semantics, except for rule 46, where the (unused) value environment meta variable VE
is replaced by a variable VI ranging over value interfaces, respectively.

7 Changes to the Dynamic Semantics for Modules (Chapter 7)

7.1 Reduced Syntax (Section 7.1)

Signatures need to be fully represented during evaluation. Hence no transformations are
made to the syntax.

7.2 Compound Objects (Section 7.2)

In order to represent dynamic signatures accurately, they must be represented by the
same objects as in the static semantics. Interfaces are hence modi�ed to be equivalent
to environments of the static semantics:

I or (SI ;TI ;VI) 2 Int = StrInt�TyInt�ValInt

SI 2 StrInt = StrId
�n
�! Int

TI 2 TyInt = TyCon
�n
�! TyStr

VI 2 ValInt = VId
�n
�! TypeScheme� IdStatus

Each interface object is isomorphic to the respective environment object of the static
semantics. Moreover, the de�nition of dynamic type structures TyStr (see Section 6.2)
is isomorphic to static type structures.

The operation Inter is adapted to the changed de�nition of interfaces. It assumes fully
polymorphic types in value environments:

Inter(VE) = fvid 7! (8�:�; is) ; VE (vid) = (v; is)g

Note that this operation is used in one place only, namely rule 108a, where this as-
sumption is safe. The extension of Inter on environments is modi�ed such that type
environments are left unmodi�ed:

TI = TE

9

We need an inverse operation that injects the type parts of an interfaces into an
environment:

Envir(SI ;TI ;VI) = (Envir(SI);TI ; fg)

Envir(SI) = fvid 7! (8�:�; is) ; VE (vid) = (v; is)g

Signature environments are also equivalent to the static semantics:

G 2 SigEnv = SigId
�n
�! Sig

� or (T)I 2 Sig = TyNameSet� Int

The set IntBasis of interface bases IB is no longer needed and thus deleted. Accord-
ingly, the de�nition of the operation Inter on a basis is removed. In the inference rules
all occurences of the meta variable IB are replaced by B. All existing applications of
Inter are removed.

The de�nition of the cutdown operation # is modi�ed to be consistent with the new
de�nition of interfaces:

SE # SI = fstrid 7! E # I ; SE (strid) = E and SI (strid) = Ig

TE # TI = ftycon 7! (�;VI) ; TE (tycon) = (�;VI) and TI (tycon) = (�0;VI 0)g

VE # VI = fvid 7! (v; is) ; VE (vid) = (v; is 0) andVI (vid) = (�; is)g

Note that constructor environments never need to be cut down, since they can only
contain identi�ers with status c and need to have the same domain for compatible types.

To model the dynamic semantics of opaque signature constraints an opaque cutdown
operation � is de�ned:

SE � SI = fstrid 7! E � I ; SE (strid) = E and SI (strid) = Ig

TE � TI = ftycon 7! (�;VI) ; TE (tycon) = (�0;VI 0) and TI (tycon) = (�;VI)g

VE � VI = VE # VI

Compared to the transparent cutdown operation #, opaque cutdown has a reversed e�ect
on type environments: instead of the original type structures, the resulting environment
will contain the type structures from the interface. Type constructors that map to
an abstract type name in the interface will hence map to the same type name in the
resulting environment. Along with appropriate freshness conditions on interface type,
this implements dynamic generativity for opaque signature constraints. Opaque cutdown
is lifted to full environments:

(SE ;TE ;VE) � (SI ;TI ;VI) = (SE � SI ;TE � TI ;VE � VI)

10

7.3 Inference Rules (Section 7.3)

Structure Expressions B ` strexp) E=p

The rules for structures and let are adapted to the syntax changes arising from the
merge of dec and strdec (see Section 2.2). The dynamic semantics of opaque signature
constraints di�ers from that of transparent ones | it creates new type names:

C of B ` dec) E

B ` struct dec end) E
(150)

B ` strexp) E B ` sigexp) T; I

B ` strexp : sigexp) E # I
(152)

B ` strexp) E B ` sigexp) T; I

B ` strexp :> sigexp) E � I
(153)

C of B ` dec) E1 B � E1 ` strexp) E2

B ` let dec in strexp end) E2
(155)

Comment: (153) Freshness of the names T in I is guaranteed by the rules for signature
expressions. Opaque cutdown propagates them into the environment representing the
structure, making it carry fresh abstract types.

Unpacking is modelled by two straightforward rules:

B(longvid) = ((E0; I 0); v) B ` sigexp) T; I (T)I � I 00 � I 0

B ` unpack longvid : sigexp) E0 # I 00
(155a)

B(longvid) = ((E0; I 0); v) B ` sigexp) T; I
there is no I 00, such that (T)I � I 00 � I 0

B ` unpack longvid : sigexp) [Unpack]
(155b)

Comment: Matching � � I 00 � I 0 is de�ned by the static semantics. Unpacking behaves
like transparent signature constraints (cf. rule 152).

Structure Declarations B ` strdec) E=p

Rules 156 and 158{160 are deleted, because the StrDec grammar has been simpli�ed
(see Section 3.3).

Signature Expressions B ` sigexp) T; I

Like types, signatures have to be fully represented in the dynamic semantics. The evalua-
tion rules for signature expressions and speci�cations are extended to evaluate according

11

to the extended de�nition of interface objects, which is equivalent to environment objects
in the static semantics. The evaluation rules hence mirror the elaboration rules from the
static semantics, except for the treatment of freshness, which is coped with by state in
order to make it deterministic. The set of generated type names is inferred explicitly. It
always contains fresh names:

B ` spec) T; I

B ` sig spec end) T; I
(162)

B(sigid) = (T)I T \ tns of s = ;

s;B ` sigid) T; I; s+ T
(163)

Comment: (163) A named signature is instantiated with a fresh set of type names.

In particular, we have to deal with where quali�cations, the same way as in the static
semantics:

B ` sigexp) T; I tyvarseq = �(k) B ` ty) �

I(longtycon) = (t;VI) t 2 T ' = ft 7! ��(k):�g

B ` sigexp where type tyvarseq longtycon = ty) T n ftg; '(I)
(163a)

Comment: Well-formedness of ' and admissibility with respect to equality is ensured by
the static semantics.

Signature Bindings B ` sigbind) G

Only signature bindings require closed signatures, so closure is built into the rule:

B ` sigexp) T; I hB ` sigbind) Gi

B ` sigid = sigexp hand sigbindi) fsigid 7! (T)Igh+Gi
(165)

Comment: Once closed, the type names of T are subject to �-renaming.

Speci�cations B ` spec) T; I

Rules for speci�cations and descriptions mimic the static semantics. However, the set of
local type names is managed explicitly:

C of B ` valdesc) VI

B ` val valdesc) ;;ClosVI in Int
(166)

12

` typdesc) TI 8(t;VI) 2 RanTI ; t does not admit equality

B ` type typdesc) tynamesTI ;TI in Int
(167)

` typdesc) TI 8(t;VI) 2 RanTI ; t admits equality

B ` eqtype typdesc) tynamesTI ;TI in Int
(168)

C of B + TE ` datdesc) VI ;TI T = ft ; (t;VI 0) 2 RanTI g
TE = TI TI maximises equality

B ` datatype datdesc) T; (VI ;TI) in Int
(169)

B(longtycon) = (�;VI) TI = ftycon 7! (�;VI)g

B ` datatype tycon = datatype longtycon) ;; (VI ;TI) in Int
(170)

C of B ` exdesc) VI

B ` exception exdesc) ;;VI in Int
(171)

B ` strdesc) T;SI

B ` structure strdesc) T;SI in Int
(172)

B ` sigexp) T; I

B ` include sigexp) T; I
(173)

B `) ;; fg in Int
(174)

B ` spec1) T1; I1 B + Envir I1 ` spec2) T2; I2
B ` spec1 h;i spec2) T1 [T2; I1 + I2

(175)

B ` spec) T; I I(longtycon) = (ti;VI i); i = 1::n
t 2 ft1; : : : ; tng t admits equality, if some ti does
T 0 = (T n ft1; : : : ; tng) [ftg ' = ft1 7! t; : : : ; tn 7! tg

B ` spec sharing type longtycon1 = : : : = longtyconn) T 0; '(I)
(175a)

Comments:

(167), (168) The type interfaces TI cannot contain any other type names than freshly
generated ones.
(175) Note that T1 and T2 are always disjoint, because state is threaded by the state
convention.
(175a) The static semantics ensures that ft1; : : : ; tng � T .

Value Descriptions C ` valdesc) VI

C ` ty) � hC ` valdesc) VI i

C ` vid : ty hand valdesci) fvid 7! (�; v)gh+VI i
(176)

13

Type Descriptions ` typdesc) TI

tyvarseq = �(k) arity t = k t =2 tns of s s0 = s+ ftg
hs0 ` typdesc) TI ; s00i

s ` tyvarseq tycon hand typdesci) ftycon 7! (t; fg)gh+TI i; s0h0i
(177)

Comment: Type descriptions are abstract and generate new type names.

Datatype Descriptions C ` datdesc) VI ;TI

tyvarseq = �(k) C;�(k)t ` condesc) VI arity t = k
t =2 tns of s s0 = s+ ftg hs0; C ` datdesc) VI 0;TI 0; s00i

s; C ` tyvarseq tycon = condesc hand datdesci)

VI h+VI 0i; ftycon 7! (t;VI)gh+TI 0i; s0h0i

(178)

Comment: Datatypes are also generative.

Constructor Descriptions C; � ` condesc) VI

hC ` ty) � 0i hhC; � ` condesc) VI ii

C; � ` vid hof tyi hh| condescii)

fvid 7! (�; c)gh+fvid 7! (� 0 ! �; c)gihh+VI ii

(179)

Exception Descriptions C ` exdesc) VI

hC ` ty) �i hhC ` exdesc) VI ii

C ` vid hof tyi hhand exdescii)

fvid 7! (exn; e)gh+fvid 7! (� ! exn; e)gihh+VI ii

(180)

Structure Descriptions B ` strdesc) T;SI

B ` sigexp) T; I hB ` strdesc) T 0;SI i

B ` strid : sigexp hand strdesci) T h[T 0i; fstrid 7! Igh+SI i
(181)

Comment: The type name sets are always disjoint, because state is threaded by the state
convention.

14

Functor Bindings B ` funbind) F

The rule for functor bindings can ignore the type names of the parameter signature,
since the interface I stored in the functor closure is only used for transparent cutdown
(rule 154 for functor application is unchanged):

B ` sigexp) T; I hB ` funbind) F i

B ` funid (strid : sigexp) = strexp hand funbindi)

ffunid 7! (strid : I; strexp; B)gh+F i

(182)

Top-level Declarations B ` topdec) B0=p

The former rule for structure declarations is adapted to the respective syntax change
(see Section 3.3). Note that the rule given in the De�nition is incorrect [6]. We give a
corrected version:

C of B ` dec) E B0 = E in Basis hB +B0 ` topdec) B00i

B ` dec htopdeci) B0h+B00i
(184)

8 Changes to Derived Forms (Appendix A)

We introduce an additional expression derived form for opaque packing:

Expressions exp

pack longstrid :> sigid let structure strid = longstrid :> sigid

in pack strid : sigid end

(strid new)

The derived form for structure expressions has to mention dec. Moreover, a slightly
more general syntax for unpack is supported (the set InfExp of in�x expressions is de�ned
in Appendix B):

Structure Expressions strexp

funid (dec) funid (struct dec end)

unpack infexp : sigexp let val vid = infexp

in unpack vid : sigid end

(vid new)

15

9 Changes to the Full Grammar (Appendix B)

Packing is added to the full syntax of expressions:

exp ::= : : : (as before)
pack longstrid : sigid packing
pack longstrid :> sigid opaque packing

Structure declarations appear as core declarations:

dec ::= : : : (as before)
strdec structure declaration

10 Changes to The Initial Static Basis (Appendix C)

The package type is a new primitive type. It is added to the initial type name set:

T0 = f: : : ; packageg

Likewise, package is added to the initial type environment TE 0:

tycon 7! (� fvid1 7! (�1; is1); : : : ; vidn 7! (�n; isn)g) (n � 0)

package 7! (package; fg)

The Unpack exception is added to the initial value environment VE 0 as a non�x
identi�er:

NONFIX

vid 7! (�; is)

Unpack 7! (Unpack; e)

11 Changes to The Initial Dynamic Basis (Appendix D)

The initial dynamic basis has to be adapted to the extended de�nition of dynamic basis
(see Section 7.2) and contains the exception Unpack and the type package. That is, we
have

VE 0 = f: : : ; Unpack 7! (Unpack; e)g

and the initial dynamic type environment TE 0 is actually equivalent to the initial static
type environment (cf. Section 6.2):

TE
(DYN)
0 = TE

(STAT)
0

Moreover, the initial type name set tns0 had to be de�ned to be equal to T0, but the
De�nition does not specify the initial state anyways [6].

16

References

[1] Mart��n Abadi, Luca Cardelli, Benjamin Pierce, and Didier R�emy. Dynamic typing in
polymorphic languages. Journal of Functional Programming, 5(1):111{130, January
1995.

[2] Alice Team. The Alice System. Programming System Lab, Universit�at des Saarlan-
des, http://www.ps.un-sb.de/alice/, 2003.

[3] Xavier Leroy and Michel Mauny. Dynamics in ML. Journal of Functional Program-
ming, 3(4):431{463, 1993.

[4] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. De�nition of

Standard ML (Revised). The MIT Press, 1997.

[5] Alan Mycroft. Dynamic types in ML, 1983.

[6] Andreas Rossberg. Defects in the Revised De�nition of Standard ML. Technical
report, Saarland University, Saarbr�ucken, Germany, October 2001. http://www.

ps.uni-sb.de/Papers/.

[7] Andreas Rossberg. HaMLet { To Be Or Not To Be Standard ML. Programming
System Lab, Universit�at des Saarlandes, http://www.ps.un-sb.de/hamlet/, 2002.

[8] Andreas Rossberg. Generativity and dynamic opacity for abstract types. In Prin-

ciples and Practice of Declarative Programming, Uppsala, Sweden, August 2003.

[9] Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten Brunklaus, and Gert
Smolka. Alice ML through the looking glass. In Hans-Wolfgang Loidl, editor, Trends
in Functional Programming, volume 5, Munich, Germany, 2005. Intellect.

[10] Claudio Russo. First-class structures for Standard ML. In Gert Smolka, editor, 9th
European Symposium on Programming, volume 1782 of Lecture Notes in Computer

Science, Berlin, Germany, March 2000. Springer-Verlag.

17

